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ABSTRACT

This paper raviews some recent develowmeats in direct time integration
metheds for nonlinear structural dynamics. The developments pertain to the

use of linear multistep difference operators in conjunction wich the pseudo-
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force approach. The paper is organized into three main sections. An

~3 introductorv section provides an overview of the transient response analysis
problem. A section on computaticnal aspects deals with the organization of
the numerical calculations; this material is largely based on a recent
detailed study of linear dynamic calculations [1-2]. A section o:. integra-
tion methods highlights algorithmic aspects that impact the selection of

integrator for nonlinear problems and discusses adaptive analysis features

such as stepsize control and implicit matrix scaling techniques. An

gt

appendix section outlines the functional organization of modular "integration

driving" software.
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Section 1

INTRODUCTION

1.1 The State of Computational Nonlinear Mechanics

Nonlinear dynamics is structural mechanics'new frontier. Although signifi-
cant progress in the theory and implementation of computational methods has
been made, nonlinear dynamics is presently an unsettled field and is likely

to remain so in the near future.

A decade ago over 90% of engineering design work and perhaps over half of
verification work was carried out using "linsar thinking" mede. Of the
norlinear analysis fraction, an overwhelming proportion was devoted to static
problems such as, for example, stability assessmert. Applications of transient

nonlinear analysis were hampered by three factors:

(1) Lack of reliable, cormputationally-oriented formulations;
(2) High computational costs;
(3 Unfamiliarity of prospective user< with nonlinear mechanics in

general and the use of application programs in particular.

Since then, these roadblocks have eroded in different degrees. Most dramatic
progress has been made in (l). Obstacle (2) has weakened by gradual but
steady decrease of unit computational costs as well as by improving efficiency

of new implementations. The "education gap" (3) remains, however, a formidable

barrier. Although it is easy to say that any problem in structural mechanics
can be attacked from a nonlinear dynamics standpoint, in practice a converse ;
route is followed. But it is often difficult for the nonspecialist to judge

in advance whether nonlinearities and dynamic effects are of sufficient

importance to merit consideration at some stage of the design or verification

cycle. The main purpose of this section is to provide a guick overview of i

structural problems that may require a nonlinear dynamics treatment.




1.2 Motivation for Nonlinear Analvsis

The increasing importance of nonlinear analysis is to a large extent due to
emrhasis placed by manufacturers, contractors and certifying agencies on
realiscic modeling and accurate analysis of critical structural components.
This endeavor has prompted not only the incorporation of nonlinear analysis
capabilities into existing linear codes, but also the development of new
finite-element and finite-difference codes specifically designed for nonlinear

analysis.

The need for nonlinear analysis capabilities was initially felt in the
aerospace industry. Pressing demands for lightweight design led to the
investigation of new structural configuration conceptz {e.g., thin shear-
carrying webs), new fabrication concepts (e.g., honeycomb panels), and
increasing use of brittle materials such as fiber-reinforced composites.
Implementation of these advanced concepts prompted concern over realistic
modeling of structural components as regards numerical simulation of their

behavior under critical leocading and environmental conditions.

Continuing progress in variational discretization and solution technigques,
coupled with the dissemination of production-level software, has helped in
spreading interest in nonlinear structural analysis to non-aerospace
applications occurring in automotive, bio, civil, industrial, nuclear and
petroleun engineering. Among those systems that are often subject to signi-
ficant nonlinear effects, we can mention thin shells, pressure vessels,
nuciear reactors, cable and pneumatic structures, impacting structures,
equipment mounts, shock-excited underwater and underdground structures, and

metal-forming machinery.

1.3 Static Versus Dynamic Treatment

As noted previously, an overwhelming proportion of engineering applications
of nonlinear structural analysis are performed in "static mode” despite the

undeniable presence of dynamic effects in many situaticns, such as snap-

through analysis. This practice is commonly justified on various grounds.




LW

First, it can be argued that many of the problem characterizaticn parameters
such as excitation and constitutive kehavior are presently poorly understood
and gualitatively uncertain to begin with. 3Second, the neglect of inertial
effects often leads to conservative results, Third, dynamic analysis is

both more cumbersome to carry out and more expensive than static analysis.

As more experience is gathered, the third argument weakers. In fact, non-
linear dynamic analysis is more easily implemented in a general purpose
program framework than nonlinear static analysis. (This does neot avply, of
course, to linear analysis.) The only practical solution procedure for the
former is direct time ir.cegration, whereas for the latter there is a vast
array of special techniques that must be mastered by rotential users. If
computational costs continue to decrease in relation to manpower costs, it
is not farfetched to presage that nenlinear static solution prccedures could
be eventually embedded into a dynamic analysis driver. If this occurs, the
second argument becomes irrelevant. The first argument (poor problem
characterization) remains valid, but an answer to this question lies primarily

within the scope of experimental mechanics.

1.4 Sources of Nonlinearities

Problems in structural mechanics are formulated in terms of three spatial
fields: displacements, strains, and stresses. These fields are connected by
the stress-displacement and stress-strain (constitutive) relations as shown
in Figure 1, which is adapted from [3]. The boundary value problem is closed
by specification of the boundary conditicns (B.C.) on displacements and/or
stresses (or stress resultants). In dyramic analysis, the initial value
problem is completed by specification of the initial displacements and

velocities at a reference state.

Any of the four two-way links shown in Figure 1 may be nonlinear. Conse-
guently, sources of nonlinearity can be naturally classified into four

groups: force, material, geometric, and kinematic, which correspond to

links 1, 2, 3, and 4, respectively.
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Fig. 1 Struetural Analysis Fields and
Ceonnecting Relationships (after [3h




1.5 Governing Equations of Motion

e ]

|

il
-tu-wﬂhmwjnhummﬂlﬂ

The response of the physical structure to external excitation is approximated

by that of a discrete mathematical mocel with n_ degrees of freedom, which

£
are collec* | in a state vector u. The components of u are gereralized dis-

placenme:.. coordinates that define the spatial configquration of the discrete

ke

model with respect to a reference state Eo for every time t. (This reference

state may be updated during the solution of highly nonlinear problems.)

A contiguous family of configurations u = u(t) satisfying initial and pres-
cribed displacement conditions is called a motion. The governing eguations
of motion apcropriate to the descripticn of a wide range of ncnlinear dynamic

problems can be presented as follows [3]: ;

Kadid

1<

i 4+ DU + Cluw + Xua + s = £(t) (1.1)

Ak o

where a superposed dot denotes temporal differentiation, and

M, D, K mass, reference~damping, and reference-stiffness matrices,
Ll ard
respectively (the "reference' concept is discussed in
Section 1.6);
c, S nonlinear demping and stiffness operators, respectively,
which generate state-dependent corrective force vectors: g
p
() vector of applied (generalized) forces. !

The motion u(t) corresponding to a given I(t) will be called the response of
the system (1.1). Essential B.C. on specific components of u(t) are assumed

to be embodied in (1.1) for notational cinvenience. The effect of ncn-

homogenecus essential B.C. can be alsc incorporated in (1.1l) through various
; techniques such as the adjunction of penalty terms or the introduction of

Lagrange multipliers.

The generation of system (1.1) from the continuous field model schematized in

- 1 Figure 1 will not be dealt with in this paper, which is concerned with

techniques for solving it. i

-
|
n
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Remark 1, Eguation (1.l) does not cover the gscteric :lass of mass-
varying creblems such as reentry vehicle J mamics. 4

Remark 2. Fguaticn (1.1} as written does not nmocel "zath derendent”

rh
rk
2

These ;

problems, in which the respgonse is a functicrna & Tast hotion.
croblems can be accounted for bv making the nenlinear terms memory-

functional operators.

remark 3. In explicit time integration, X = %, and all stiffness

information is transmitted in vector form.

1.6 The Pseudo-Force Approach

Implicit direct time integration procedures for solwving (1.1} can be based
on either the tangent stiffness or a pseudo-force arproach. In the former,
which is briefly discussed in Section 2.8, (1,1) is linearized at each
computed state and the solution advanced incrementally. 1In the latter, the

reference matrices K and D are xept fixed over many computat:ional steps and

the nonlinear terrs S and C are treated as state-dependent reaction forces; 1

this is the approach emphasized herein. :

The application of the pseudo-force approach to transient nonlinear analvsis
was first advncated by Stricklin, Haisler and coworkers {4]. Their strategy
was to use the linear matrices X and D evaluated at the initial cornfiguration.
We can, however, do much better from a global point of view if the selection %
of X and D is not so restricted; in fact, such matrices need not be identi- :
fiable with the stiffness and damping matrices evaluated at actual configura-

tions. This generalized pseudo-force method, presented by Underwood and

park [5], is designeé to work effectively in conjunction with the matrix

scaling technique described in Section 2.

The generalized stiffness selection concept may be illustrated with the
bilinear spring shown in Figure 2. In the conventicnal pseudo-force
approach, the stiffrness would be based on the initial slope ko. In the
approach d2scribed here, an average slope X can »a used to evenly distribute

the force residual magnitude over the expected operational range (note that

1

k is not physically attainable).

A S P P e




FORCE

DEFLECTION
. ot

Fig. 2 Reference Stiffness Selection for
Bilinear Spring Element (after [3])




A helpful guideline is: integration procedures based on the pseudo-force
approach experience less difficulties with "softening" systems (e.qg., elasto-
plastic materials) than with "hardening" systems (e.g., tensile structures).
It is therefore best to err on the side of overestimati.s the initial refer-
ence stiffness. As a simple application of this rule, consider the impact
analysis of two structures, S, and S_, which are initially separated. Then

1 2
the reference stiffness should be that of Sl+S2 moving together.

1.7 Clasgification of Nonlinear Dynamics Problems

A simple classification scheme can be based on the effect of the spectral

characteristics of the excitation on the overall structural response:

Structural Dynamics (SD) Problems: The response is controlled by

a relatively small number of low-frequency modes.

Wave Propagation (WP) Problems: The contribution of intermediate

and highefrequency structural modes to the response remains

important throughout the time span of interest.

In the above, the terms "frequencies" and "modes" refer to the eigenspectrum
of the linearization of the left-hand side of ( -1); because of nonlinearities
this spectrum can be expected to vary (usually mildly) with the state. The
qualifiers low, intermediate, and high refer to frequencies whose associated
wavelengths are much larger than, of the order of, and much smaller than the

characteristic acoustic wavelengths, respectively.

In practice, a combination of the preceding types is often encountered:

Shock-excited Problems: An initial high-frequency transient

gradually decays to a steady state or free vibration regime (step

waves, earthquakes, single impact, separation phenomena, accidents).

Multishock-excited Programs: Multiple high-frequency transients

occur with some regqularity, possibly leading to gradual collapse

cr fatigue phenomena (reflecting shock waves, repeated impacts,

pericdic deployment).




Dynamic Instability: Relatively smooth, bounded response

suddenly "“takes off" as critical conditions are attained
(fcllower forces, flutter, parametric excitation, phase

changes) .
Generally speaking, implicit integration methods are meost effective for 3D
problems (or phases) while explicit integration methods are at their best

for tracing WP problems (or phases).

1.8 Organization of the Paper

Direct time integration techniques for (1.1l) can be studied from two

standpoints:
1. Algorithmic: Study of mathematical properties such as stability

and accuracy of the integration formulas.

2. Computational: Study of properties directly correlated with the

implementation of the integration procedure on a computer.

An array of subjects pertaining to the latter viewpoint is presented in
Figure 3 in logical flowchart format. The basic formulation steps leading
to the "advancing cvcle" hox {(central column in Figure 3) are covered in

Section 2.

Section 3 reviews algorithmic aspects that impact the selection of integra=-
tion formulas for nonlinear dynamics, and discusses features labeled as

"advanced" in Figure 3, namely accuracy control via automatic stepsiza

selection, and the matrix scaling technique.
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Section 2

COMPUTATIONAL ASPECTS

2.1 Reduction to a First-Order System

Equation (1.l) can be reduced to a first order system by introducing the

auxiliary vector v [6]:

v = Anu + B8

v Mu + B
—— L d L di Y

A(E-C-s-Ku-Dw + 81

where A and B are (for the moment) arbitrary n. by n_ matrices with A non-

£ f
singular. These matrices are independent of time and state, although they
can be functicns of the integration stepsize. The resulting first-order

system (2.1 - 2.2) can be written

B L

AK 8

where I and Q denote the identity and null matrix, respectively, and @

is the effective force
g = £-¢c-s
Note that the nonlinear terms C and S have been transferred to the right-

hand side as "pseudo-forces." Equation (2.3) fits within the standard 0.D.%®.

format




-1
B 2 v-Bu
F = (2.6)
A2-2 1 BQ-Kw
2.2 Time Discretization by LMS Formulas

We consider the numerical integration of the first-order system (2.3) using
m-step, one~-derivative, linear multistep (LMS) difference operators to dis-
cretize the time variation of u and v, A detailed treatment of these methods
can be found elsewhere, e.g.,[7-9]., For a constant stepsize h, LMS operators

applied to E3z.(2.3) at the n-th time station tn can be written

m m
E ., U, = h E g, & . m2 1l, nzmn
i —n=-i i —n-i
i=0 i=0
(2.7)
m m
. v = Y . ’
ZYL—n-l h E:Gizn-x c‘o’éO Yo#o
i=0 i=0
where o, Bi’ Yi’ and Gi are scalars associated with specific finite
difference operators, and Ek’ !k’ ... stand for the vectors E(tk), l(tk), cee

computed through the discretization procedure (2.7). The above difference
expressions may be scaled by arbitrary factors. 1In the seguel they will be
normalized by requiring that

a = ¥ = 1 (2.8)

If BO is nonzerc (zero), the operator (2.7a) is said to be implicit (explicit),

and similarly for (2.7b).

With a view to subsequent manipulations, it is convenient to introduce a

more compact notation which, nevertheless, separates axplicitly the current

2-2




state variables u , u , v, v from historical terms involving past
-n n -n N
solutions:
u + a = h,u + hb~
-n - 8 — -
(2.9)
v + cv = h v + h dv
-n -n § - -n
where the "generalized stepsizes” hB' h5 are defined by
= h = 2.1
hS BO hé h 50 ( 0)
and vectors a, b, ... denote linear combinations of past solutions:
zZ . 2 2z .2
b = . .
lén_nsnén] [.z.n-l Zom| |01 B2 o1 &
. : (2.11)

In Bg. (2.11), 2z is an arbitrary vecter symbol, which may stand for u, é, S

etc. The current state solution

fc
Y4 hg v,
v h G
- § —n
where
Y = hp -
~n -1
nn = hd -
- -

will be called, following Jensen

u and v, respectively.

(En,gn) can be expressed from (2.9) in the

h\J
-

+ (2.12)

474

L 1

(2.13)

1%

[6], the historical vectors pertaining to




2.3 Implicit Integratiocon

We consider first implicit LS operators, for which both 50 and So are
nonzero, whence hB # 0 and h5 # 0. Elimination of éﬂ and QT from (2.3) and

2.13) then produces the nonlinear algebraic system ot order { ne:

AM+h, B -h, I u AMhY
= u v
2R-RTR RS "1 (1 ‘%2'5’!‘.,1*“3“*1“352,,

Sl 3 = ’ = - C - - 2 i i 1 f
where n he/hé 80/6O and gﬂ gﬂ <, §ﬂ Finally, elimination o Y

from (2.14) yields the rn_-th order nonlinear algebraic system

(2.14)

£
E En = g (2.15)
- where
E = M+ halg + hB h5 K + (hB - ha) G
u -1 v
En = [ﬁ + h6(2;§)] Qﬂ + hB A Bn + hB h5 Qn (2.16)
s =27

The selection of a common LMS operator for both u and v is natural if the

analyst wishes to keep similar discretization accuracy on both vectors. In

this case, Egs. (2.9) become

(2.17)

u + au = h, u + h bu
=n -n A <n “n
v + Vo= h, v + h bv
-n -n B -

and the components of (2.15) simplify slightly to

E =M + h, D + n K

—

[

[

~
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The coefficient matrix E becomes independent of the choice of A and B in

this case, as noted by Jensen |6 }.

Remark 1. The generality of the discretizatien (2.7), in which different
LMS operators may be used for u and v, has two important advantages. First,
the use of different approximations for u and v is allowed, should that prove

desirable on account of the piysical meaning of v resulting from specific

choices of A and B in (2.2)., Second, special two-derivative integrators devised

for treating the second order system (l.l) directly, such as the widely used
Newmark [10}, Houbolt [11], and wWilson [12] operators, can be presented as
special cases of a slight extension of (2.7), in which a historical u-term

is appended to (2.7b), as shown iu Reference {1]. It follows that a separate
study of the computer implementation of these methods is not required.

~1

Remark 2. If h, # h,, the choice of A and B should be such that ¢ = A B

) §
is symmetric and maintains the sparseness characteristics of the structural
matrices. (All of the choices discussed in Section 2.5 comply with these

restrictions.)
kemark 3. If two different A-stable operators are used for u and v, and
B is nonzero, the resulting system (2.14) is not necessarily A-stable. Sta-

bility conditions have to be checked out in advance to avoid surprises.

2.4 Computational Paths for Implicit Integration

Implementations of the implicit integration procedure outlined in the pre-
ceding section may differ in two respects: (a) the selection of weighting
matrices A and B in (2.1), and (b) the manner in which the resulting

auxiliary vector v and its temporal derivative i are computed at each step.

We deal with the latter topic first.
Three basic computational paths, labeled (0), (1), and (2), may be followed
in advancing the discrete solution over a typical time step. The associated

sequences of calculations are flow charted in Figure 4.

The path idencification index, (0-2), gives an idea of the number of backward

2=5
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difference operations performed in the determination cf ¥ and v in each
-1

solution advancing cycle. It is shown in Reference |[2] that this index

plays an important role in the error propagation behavior of particular

implementations.

Path (0) is consistent with the first-order difference system (2.14), i.e.
the computed vectors satisfy this system exactly if computational errors
are neglected and the solution of the nonlinear system (2.15) is iterated to
convergence. (The solution error can actually be regarded as a component of
the "local” computational error [2].} The original O0.D.E. system (1.1) is
also satisfied. On the other hand, the computed u , 4 and v d&o not, in
-n’ - -
general, verify the auxiliary vector definition (2.1), which is satisfied

enly in the limit h - 0.

A slight variant of path (0), labeled (0'), is alsco shown in Figure 4. 1In

this variant the velocity vector én is recomputed so that (2.1) is verified

-1
at past stations. This "delayed correction" is not only expensive for general
A and B but worthless as regards improvement of error propagation character-

isties [1,2}]. 1It is included in Figure 4, however, because it occurs naturally

in the conventicnal choice v = é discussed in Section 2.5.
Path (1) satisfies both differential expressions (1.1) and (2.1) at the
expense of (2.14b). Finally, path (2) enforces the v definition (2.1) and

the difference system (2.14) at the expense of (1.1).

2.5 Selecticn of Auxiliary Vector

The computational effort per time step (and, to a lesser extent, the storage
requirements) can be significantly reduced for certain choices of A and B
because some of the computational steps displayed in Figure 4 can be either
simplified or entirely bypassed. The following two selections were studied

in detail in Referaence [1] for linear dynamic problems:

v = u (13_:;_4"1 . B=20 (2.19)
v = Mu + Du @A=Lr.B=D (2.20)

I



Equations (2.19) and (2.20) were labeled the conventional (&) and Jensen's
(J) formulations, respectively. When these two choices are combined with
the four computational paths of Figure 4, a total of eight formulations

of the advancing step result. The comparative study carried out in

Reference |.]| identified the following combinations as preferable:

(C1) Minimizes computational effort for umdamped systems when used
in conjunction with backward-difference operators and requires
less vector storage than (JC), but does not possess favorable

error propaygation control properties.

(J0) Minimizes computaticnal effort per step for generally damped svstems
and has excellent error propagation control properties, but requires

additional vector storage.

In both these formulations, the presence of an ill-conditioned or singqular
mass matrix M does not cause any particular difficulty. There are also no
problems associated with the starting procedure. Similar conclusions can be
extended to transient nonlinear analysis handled with the pseudo~force
approach. The optional corrective iteration cycle shown in Figure 4 does not
affect computational effort rankings provided invariant calculations are
moved out cf the loop. The computational sequences associated with the (Cl)

and (JO0) formulations are shown in Tables 1 and 2, respectively.

Additional formulations of interest in the nonlinear case are obtained if
matrives A and B are allowed to be stepsize-dependent. For example, the

~

selection

v = M3 + (D+h, K u (2.21)

8
in conjunction with path (0) leads to a variant of the (JO) formulation
that will be denoted by (J0K). The associated computational sequence is
shown in Table 3. 1Its more intaresting feature is the relocation of steps

(a) and (b), which is believed to offer some advantages in array manage-

ment if an iteration loop is applied.




Taple 1

COMPUTATIONAL SEQUENCE ASSCCIATED WITH THE (Cl) FCRMULATION

Step Calculation
A 33 = f - - -
2 A% frm1 TR E TR,
! .
= 1 1 1
b ! v 4 (trivial)
i
u a4 u
c M h = hd -Mc
P "f‘n Pt
d n” = nb*-a”
-n -
(L)
= M+
e E . h:S D+ hB h5 K
£ Predict or re-evaluate C , § . - m - = = =
-n’ !
)
u u !
= 2 . + 7 - 2
g ., @b R hlengmMlenng Y
1
-1 '
h ETI - —~ Sn ]
. . (2) |
. u Optional Iteration .
i u = (u =-nh )/h8 -------------
NOTES :
(L E is assembled and factored only occasionally, cf. Section 3.
(2) If iteration is used, calculation of the invariant portion of
a4, should be moved outside the loop.
|

' = P S LD S R Lt Ao e = R



Table ¢

CCMPUTATIONAL SEQUENCE ASSCCIATED WITH THE (J0) FORMULATION

' Step Calculation
|
a ¥ = -
' V-1 Zn-1 "8 8
!
! A 4 -
| ° IR AT WERLS S A
! i : !
| c E hv = hd - cv
' i - N -
- ]
é ' = hpt-a"
e -c -
(1) .
e E = ﬂ+hsg+‘16h8§
£ Predict or re-evaluate C , S i
-’ “n !
1
u v !
. S, T RE tRghithghg g .
t
-1 l
h 5, = E g :
1
. u Cptional Iteration(Z) !
f i u = (u =-h)/h, - == =< 2"-"2"270 a2 - - -
- -n <
NOTES: (1), (2), see Table 1.
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Table 3
COMPUTATIONAL SEQUENCE ASSOCIATED WITH THE (J0K) FORMULATION
Step Calculation
c h' = na -c’
- -n =
4 h* = hb’-a®
-n - -n
(1)
E = M+ h, D h
e E M g 2By K
b4 Predict or re-evaluate C , S = ---—-
-n' “n !
]
. u !
. LT % KR .
1
u v ,,12 . )
3 9o T BBy thgh, Tl |
)
_ -1 i
h P—n = E 9_n 1
|
, . 2% /n Optional Iteration 1
i w = {u ~h)/ g TSttt
b v = h +h, v
-n - § =
NOTES : (1), (2) see Table 1.




Similarly, the use of the auxiliary vector

~h,u) = Mh (2.22)

E-_"M'(En B - ~ -

in conjunction with path (2) allows a similar relccation of steps (a) through

(b); its practical value has not been assessed, however.

Table 4 provides a "snapshot" view of vector structures involved in the pro-
gramming of the (JOK) sequence. The flow of computations required to advance
the solution over the n-th step is indicated with arrowed paths. (Similar

diagrams for the (Cl) and (J0) sequences can be found in [1].)

2.6 Primary and Secondary Computational Variables

In the formulations discussed in previous sections, the displacement vector
En’ which is obtained from solving (2.15), is called the primary computational

variable; the cther three state vectors (éﬂ, gn, &n) are sjecondary or derived.

E We could have solved (2.3) and (2.12) for another state vector. For

' f. example, the counterpart of (2.15) for the velocities is

u -1 v
K + G) Dn + A En + hégn (2.23)

= - (hG"ﬂ

A=

The displacements u would then be computed from (2.12a); this sequence
effectively reverses steps (h) and (i) in Figure 4. (Corresponding systems

for v. and v_ are considerably messier for general A and B.)
-m —Tl P~ Pt

If exact arithmetic were used throughout, the selection of primary variable
would be irrelevant. The choice does matter, however, if computational error
propagation is considered. Generally speaking, the state variable of main
interest in the analysis should he selected as primary. For structural
dynamics problems, displacements are a natural choice. In fluid-structure
interaction problems, however, structural velocities are of utmost concern and

have been used as primary computational variables in the implementation of

staggered solution procedures [13].

— 5 g BT RS B merus‘mawmzmm;_ﬁ'[m? ;]




Table 4
VECTOR STORAGE ARRANGEMENT FOR (JOK) FORMULATION

Multistep Historical Previous Step Current Step
Information (missing if m=1) Information Information

Tom T2
7
v R P
[_n_m PP ~ﬂ-2]
NOTES:

1. If a pair of backward difference operators (b = d = 0) is used,
information enclosed in brackets is not reguired for advancing
the computations, and those computational steps identified by
broken-line paths may be omitted.

2. If iterations are applied, the arrangement is slightly more
complex, since invariant vector portions must be removed from
the iteration lcop.

R R




2.7 Explicit Integration

If two explicit integration procedures (BO = 3 = Q) are selected in (2.7},

the computational seguence becomes

u = hu

-n -n

v = hv

-n -n

’ (2.24)

d = uwltatw -Bu)

v =A(9n-xu-oml)+5\l
Economic execution of this sequence demands the presence of a diagonal (and
nonsingular) mass matrix M. In addition, the conventional formulation
yv=au, i =Uu (= ﬂ-l, B = Q) simplifies the last two steps. The third one
becomes trivial, and the only significant matrix-vector operations occur in
the last step (acceleration calculations).
The "full-step" sequence (2.24) should be avoided in practice, however,
because of its poor error propagation characteristics. The so~called "half-
step” or "half-station" formulation is much preferable:

u = n°

-n -

- .

AU A Y (2.25)

v = 4 = vt -Ku -Du)

- - ~ Qn ~-n ~-

The surmed form [7] of the central difference method can be presented in this
form [l4]. Difficulties arise, however, if the system is damped because the

velocity term én in (2.25c) is not readily available in this implementation.

Reference [15] discusses various ways of circumventing this problem.
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.8 The Tangent Stiffness Approach

We close Section 2 with a brief review of the tangent stiffness approach to
nonlinear structural mechanics. Assume that the computations have proceeded

up to t = tn Irtroduce the increments to the next time station:

AEn = En+l -z (2.26)

where z stands for any variable vector such as u, é, ..., etc. The effective

force increment is linearized as follcws:

g,

Af - AC_ - 458
-n - ~n

. 2
= - (Z + - C. + .27
8 - (2, +8) du - g, su+ o(faul[D (2.27)
in which gu’ Eﬁ and éu denote the matrix Jacobians of C and S with respect to

u and u, evaluated at t,- The tangent stiffness equations can be derived as
follows. 1Insert a A in front of every variable state vecter in (2.3) and

(2.12), replace Agn in (2.3) by the linear portion of (2.27), eliminate Agn,

A!n and Aﬁn as in Section 2.4, and finally divide through by h hé' The result

B

is the "quasi~static" incremental counterpart of (2.15) (see also [3]):

*

K~ Au = H + Af (2,28)
~ "= -n -n
where
K = K+C +85 +hit (Dag) + (hT-h3h) G+ (hgh oM
-~ ~ ~aa ~4 B —~ ~y 8 B ~ 8%
B o= |thhot M+ nt @] B+ nTt ATt A
=n B4 ~ A~ § ~ =n
(2.29)
~u u
Bn " “n+l  -n * hB %n
" _ v _ .
Lln - En+l LA Bs In

*
In (2.28), X is the tangent (dynamical) stiffness and gﬂ is a historical force

vector.

et i s iz
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In the "purely incremental" application of this appreach, Egq. (2.28) is
applied at each step to advance the solution by Agn and no correction is

applied at tn to account for the truncation error in (2.27). 1In large two-

+1
and three-dimensional problems, this naive procedure incurs in enormous com-
putational expense in forming and factoring 5* at each step while achieving
only first-order accuracy (regardiess of the accuracy of the integration

operator). A better strategy is to apply one or more corrections at tn+l'
This helps in balancing the accuracy of the integration formula with that of

the nonlinear force calculations.

If 5: is maintained constant over many steps and recomputed only as needed
because of strong nonlinearities, a restricted, "tangent-updating" version of
the pseudo-force method results. As noted in Section 1.6, a more general
strategy is emphasized in this paper. By judicious selection of the reference

"secant”" matrices in (1.l), highly nenlinear problems have been processed

without a single recalculation of the left-hand side matrix E in (2.15).




Section 3

INTEGRATION METHODS

3.1 General

Three major aspects Of integration methods for nonlinear structural problems
are covered in this section: stability and accuracy characteristics of
integration formulas, stepsize changing techniques, and automatic stepsize
selection strategies. Throughout this section we use the term "method" to

represent the synthesis of these three aspects.

The question of stability of implicit formulas for nonlinear problems is far
from settled and will undoubtedly continue to receive much attention. A

review of some promising results is given in Section 3.2

» The bulk of the literature on integration methods is concerned only with
K f algorithmic properties (stability and accuracy) of fixed-step integration
formulas. In practice, these properties are seldom preserved when the step-
size varies. Moreover, in implicit methods, the dynamic coefficient matrix
has to be formed and factored whenever the stepsize is changed. We use here
the term "step changing technigque" to denote the set of rules and procedures
for minimizing the effect of stepsize changes on stability and accuracy ¢of the
fixed-step formula, and for reducing the computational effcrt involved in each

stepsize change. This is dealt with in Section 3.3.

Automatic stepsize selection strategies are the most talked about but least
advanced of the three aspects. Two crucial questions in computational struc-
tural dynamics are: How can ar explicit solution process be kept stable when low
accuracy is requested, and how can an apparently stable solution computed by
implicit methods be guaranteed accuracy? In Section 3.4, we present a pro-
mising step selection strategy for explicit methods which has been shown to

be both robust and reliable, and which is aimed to answer the first question.




For implicit methods we also list promising error control criveria and give

an appraisal based on somewhat limited experience.
In Secticn 3.5 we mention some of the new approaches aimed to solving
effectively special classes of problems. Finally, we list some of the pro-

mising areas for future research in Section 3.6.

3.2 Stability and Accuracy of Multistep Methods

Let us consider the homogeneous, undamped nonlinear case with identity mass

matrix
u + 2w = 0 (3.1)

Following Prothero and Robinson [16], we approximate (3.1) in the neighborhood

of the numerical solution u = y as
. N2
4o Q@) - (w) (u-y) (3.2)

2
Wh ™ = = g (3.3)

~

The (Cl) implementation of (3.2) using (2.16), i.e., the same integration

formula for u and é, vields after some manipulation

LS e

Ry o e v

kK
i "A. e , = T
~i =n-i -n
i=0
where
1
«. I 2. n1l
i~ i
A =
2 ., B. h a, I
~a-1 i i~




ty -i - Xn—i)
€ =
i . .
(© -1 - xn~i)
(3.4)
k -
PICHENIREE N
I
=
in I .
N .
PIACHEA h8; 2n-y)
j=0
The stability of multistep formulas for model nonlinear equaticns (3.1)
can be assessed from the characteristic equacion
k
k-1 -
det R N R IR (3.5

i=0

and the local error is obtained from (3.4) by taking {en_j= 0; j=1,.., k} .

-1
e = A I, (3.6)

We now deduce some known results from (3.4 - 3.6) when Equation (3.1) reduces

to a scalar problem. For the trapezoidal rule (ao = -a; = 1, 3O = Bl = 0.5),
Equation (3.5) becomes
2 h2 2 2
P s L SRR B (3.7)

from which one obtains the local stability condition of the trapezoidal rule
w. o> w (3.9)
The stability condition (3.8) implies that the trapezoidal rule is locally un-

stable for spring-softening in the sense that the solution perturhation grows

(see Fig. 5), viz.,
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—_ 7 > 1 (3.9)

This undesirable property was pointed out by Gourlay 17| for first-order
parabolic equations and for second-order hyverbolic equetions by Park (18,19],
in which a pathological case was presented. For bilinear-spring models,
several pathological examples were presented by Hughes [20]; detailed condi-

tions for unstable solutions were recently derived by Westermo [21] by the
phase-plane technique.

The local error is easily computed from (3.16)

2 -1
( h mi ) ‘ . h2 I
2'c =\t 4 yn - yn-l - A yn-l M e (Qn+Qn-l)‘
-1
3 2 (3.19)
h2 ( . wn ) ‘ 2 I
= i 1+ 4 ((Qn-Qn—l) * 3 B yn—ls
from which two asymptotic cases are obtained
2 3
h h™ ..
4 (Qn Qn—l) * % Yp-1 ¢ Yy h~0
Qc 2 (3.11)
n? 2 ..
2 (Qn_Qn-l) t 3 h Ya-1 rYy h>e
(wnh)

The asymptotic expressions (3.11) show that the local error can be made small
for the two extreme frequency components. However, nothing can be said from
(3.10) as regards the magnitude of the local error corresponding to intermediate
frequency components, In a practical context, this implies that even though

the stability condition (3.8) is violated for the two extreme frequency :om-
ponients, the absolute error magnitude will most likely remain small and may

not be detected. 'This sugges“s that the instability of the numerical scolution
by the trapezoidal rule becomes noticeable when it is caused by intermediate

quency cohponents as explained in 22§

L

i
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The source of the instability of the trapezoidal rule for certain nonlinear
problems was attributed to the use of historical derivatives in {1l€].

- r 3 - / . . - ) B - -
The effect of historical deriviatives can be eliminated by adopting one=leg

formulas, which are obtained by selecting

k
- 1 . - .
= I . ’ . = O; = RN .
Bo o E nj B3 3 1 k (3.11)
j=0
Notice that backward difference formulas are a special class of the one-leg
formulas. Let us consider the midpoint iwmplicit formula, which is the one-

leg adaptation of the trapezoidal rule, viz.,

- n oA
- + —_
un un-l 2 un
i N . h -
u = U t 3 un (3.12)
where 1 = l'(u +u )
Yn 2 n n=-1
The characteristic equation for the midpeint rule (3.12) is
2 “’xzuhz 2
(A-1) + 2 (A+1) = 0 (3.13)

which indicates stability regardless of the possible variation of o The

local error is obtained in the form

-1
( mihZ\ ‘ . h2 '
- — r : — )
e 1+ )lyn Y=l % Yp1 2Q(y$
2.2+
= ﬁ(J,+ w“h) ‘y + 9y ) + ]li;" (3.14)
2\ 4 l n-1 n 3 n—l’
-1
2 w2h2
= - h— l + n Y
4 4 n
Therefore,
3-4
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2

h™ .. .
-_—Yy ’ w n =23
4 n n

('c ~ h2 " (3.15)
Yn

(W h)2
n

The comparison of the two asymptotic error expressions (3.11) and (3.15) shows
that the trapezoidal rule is more accurate than the midpoint rule for nonlinear
problems provided

2l ~ oty (3.16)

The two one-step formulas have been used to integrate the model nonlinear

problem (see Park [18])
G + 100 tanh (u) = 0, u(0) =0, u(d) = 25 {(3.17

The results show that the midpoint rule gives stable sclutions for all stepsize
ranges tested while the solutions by the trapezoidal rule becomes unstable
for stepsizes h > 0.2. The interested reader is referred to recent work by

Dahlquist {23} for the stability analysis of multistep one-leg formulas.

3.3 Step Changing Technique

A proper choice of implicit integration formulas can ensure numerical stability
without stepsize limitations (the so-called A-stability). The stepsize is

then established sclely from accuracy considerations. Exploitation of
this favorable property is often difficult, hcwever, because of the computa-
tional overhead associated with stepsize changes. These difficulties are
examined in Section 3.3.1, which is followed by the presentation of an improved
matrix scaling technique [24]. This technique accommodates stepsize changes
without requiring a recalculation of the matrix E in (2.15). Applicable

ranges of this =echnigue and the importance of associated predictors are

examined in Section 3.3.3. Finally, the effect of stepsize changes on the

stability of the integration formula is discussed in Section 3.3.4.




3.3.1 Difficulties in Variable-Step Implicit Methods

We recall Equations (2.15) and (2.18) for the reader's convenience

E =

=% 3

5_(6)=§+62+62§_,6zh3=h (3.17)
u v <2

9, -_ngg_xn+6§ﬂ+agn

The stability properties of the integration formula (2.17) can be maintained
by solving (3.17a) accurately by a convergent iterative method. If the mass
matrix M is diagonal, the following predictor-corrector iteration schene

appears at first sight attractive:

(W]
fa
[#5]

TR I e [g(m) -850+ 3K i(m)} (
-n ~ =n '~

(This results from splitting E = M + (8 D + 82 K) and transferring the second
term to the right-hand side.) Unfortunately, it is well Xnown that (3.18)

converges only if

c w h < 1 (3.19}

where ¢ is a constant of order unity. The stepsize restriction (3.19) is
of the same order as that imposed by explicit methods. Thus, (3.18) wipes
out the basic advantage of implicit integration. The A-stability of implicit

formulas can be retained by using the Newton-like iteration

~

™ (g (u(mf}) - u(m)) = gém) - g™ g o™ (3.20)
~ -n -n —n

Notice that for linear problems, i.e., constant E and g, (3.20) gives the
. . . . ’ . 0

converged solution with one iteration regardless of the predictor gé ).

If the stepsize is varied, the matrix E(S

H

) has to be refactored. This
new
can be costly in practice and is a major barrier to the effective use of

implicit formulas for variable step integraticn cf the eguations of motion.

A means to overcome this difficulty is described below.
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3.3.2 Matrix Scaling Technigue

Let us express the matrix (<) in the form

E(6) = E(5) - R (3.21)

@) -~

0|+

where s is a scaling parameter and R is a residual macrix to be determined.

Substitution of (3.21) into (3.17a) yields
- = (3. 922
5(60) u S (gﬂ + R En) o] {3.22)

where the residual matrix R is

L 8 § 2
R (——l)M+(—q—6) D+(L—62)K (3.23)
An iterative method for (3.22) takes the form
(m+1) ¢ =1 (m)
= - .4
9 s E G (g *+Ru ) (3.24)

Notice that we have freedom for improving this iterative method by chocsing

(m)

the scaling parameter s and predictor u appropriately. The convergence
of the iterative method (3.24) can be conveniently examined using
the scalar case
M = 1, D = 20 and K= w? (3.25)

The spectral radius of the iteratior matrix becomes

| (1-s) + 2(8_-s8) fw + (dg-saz) w?|
kKls E (6§ ) R] = (3.26)
1+ 2 Ews  + wls?

[e] o]

a) Fixed-step case (s=1, § = §). The spectral radius is zero from (3,26)
O

and accordingly the solution converges with one iteration as it should.

b) Variable Step Case g§° # 8). This corresponds to integrating with a
stepsize other than the factored stepsize Go. If the svstem is undamped

(£ = 0), the optimal scaling parameter is

3-9



(3.27)

[V R e 3 (N

=]

F~r the multidimensional case, the choice (3.27) with w = wc, a "scaling

frequency", gives

[(n?2 - 1) (2 - )|
_ (3.28)
(1 + ng) (1 + n202)

in which n=38/8 , 0= 48w.

The case Qc = 0 and n > 1 was investigated in [25] and some preliminary

v performance data was reported in [S]. If n <1, (3.28) shows that Q_ v {
3 c max L

is probably adequate.

Global convergence for the entire frequency range is obtained with the following

choice of the scaling parameter: 5

2 _ ,.22

Lo , s=1.7n%]

1+ n2 a2

< = (3.29)

o 2 2 - 02 202

(1 n )(Qmax Q=) 1+ nﬂmax

. , s = , N <1
(L + Q% ) (1 + n2n2) 1+ 02
max max

As can be seen from (3.29a), the spectral radius « for n i 1 rapidly appreoaches
unity as the sampling frequency  increases. This restricts the choice of
predictors to extrapolation from displacements only, because the inclusion of
velocity terms in the predictor can generate large errors in the predicted

displacements which contain high-frequency components.

On the other hand, when n = 60/6 < 1, the spectral radius of (3.29b) approaches
unity and zero for lew and high frequency components, respectively. A desir-
able convergence property is to chtain as small a spectral radius as possible

for the "accuracy" range 0 < wh < 2 and to bound the spectral radius below
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unity for the "noise" range wh > 2 for iteration stability. Note, for

example,that the globally convergent choices (3.29) yield

(n2 -~ 1
1+ n?

- 1 , n>>1 ; a4 -+1

(3.30)
1 a2 2 _
(L n<) (Qma.x 1)

2 2
(L+@ g 1+

> 1 . ne<<l ; 9-+1

This indicates that both cases give a poor convergence rate in the accuracy

range as the integrating stepsize 4 deviates further from the factored stepsize
o

3.3.2 Improvement of Low=F._ ~uency Convergence Rate

In order to improve the convergence rate for the accuracy range O < wh < 1,

we introduce an acceleration scheme

™ L e ™ W L ) (3.31)
where £ e g s EET g re 2™ (3.32)
Combining (3.31) with (3.24) one can derive the following error eguation

£(m+2) I £(m+l) £ (1 - ) E(m) -8 sk E;l E}{(m+l) (3.33)
The stability and convergence properties of the acceleration scheme (3.31)
can be evaluated from its assocliated characteristic equation

\2ro- (al-BsE_E;lE)A+(a-l)L=O (3.34)

It can be shown [24] that stability requires that




2 + 29 [(1-5) + (n? - s) 2]

. 0O<acx<2, 8 < 2u {3.35)
(1 + n? 22 -
The conditions (3.35)are satisfied by the choice
- “max "min - 4 )
a T8, 8 M,*m (3.36)
where u's are the eigenvalues of the system
(s B E6) ™ B-up y=o (3.37)

The convergence rate « of the acceleration scheme (3.31) can be expressed as

1l - .
umax/umln

K = (3.38)

+
1 J umax/umin

Consequently, the narrower the spread of the eigenvalue spectrum, the faster

the convergence rate.

When the integration stepsize & is larger than the factored stepsize 60, i.e.,

n = 50/5 < 1, one obtains

Ll_'_ﬂz_)_az_

- 1 s Q=+0
1 + a2
u = - 2
_(_l__n..._)-_p_ - o} , Q - @ (3.39)
1 + en?
2y 5.2 2 2 =
0.17(1-n<)/n ' Q<.+ 0.44/n° ; szmax n=1

. 2
where we have chosen the scaling parameter s and the constant a” as

2.2
s = tnat L (3.40)
1+ a
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< _ 2y »2
a (1 + p n%) Qmax (3.41)

. Lt
rviian

|

The preceding asymptotic estimates of the eigenvalues of (3.37) indicate that

if Q@ is accurately known and § /8 = 1, one can achieve a rapidly con-
max max o

vergent scheme through the acceleration (3.31).

A similarly favorable convergence rate for the case n > 1 is harder to achieve

and requires alternating iterations with two different factored matrices [24]. ;

[
{
i
?
;
'{

3.34 Effect of Step Changes on Stability

There are two techniques for incorporating step changes in the multistep
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integration formulas: interpolation of past sclutions to represent solutions
at equal intervals of the present stepsize and use of variable coefficients

in the integration formulas. 1In general, interpolation requires additional
solution vectors to be stored for preservation of the fixed-step accuracy and
stability. The introduction of variakle coefficients alleviates the addi-
tional storage requirement, but is known to cause instability if the stepsize
is varied too often [26]. Figure 6 shows the stability region of a three-step

formula [18] as adopted to variable coefficient technique in the form

CJ‘o ntl c"ZL un T % Yn-1 * %3 Hp-2 +h un+1
where

o 1+nl 2(1+nl+n2)

on )
. ) (1 + nl) (,l + 2nl + n2)
1 2r1l (r\l + n2)
(3.42)
T S il U
2 2n2 (X +mn)
1

. ) 1 (1L + nl)

3 2 (1 + Ny + n2) (nl + n2) N,y
and

L L e L R N ALV |

Note from Figure 6 that a decrease in the stepsize shrinks the unstable zone
and results in an increased numerical damping as the stability boundary departs
further from the imaginary axis. an increase in the stepsize, on the other
hand, expands the unstable zone which includes a segment of the imaginary axis.

This segment will cause local instability if the combinatioen of frequency

contents and the stepsize,
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wh, falls in that zone. It is also noted that the fixed, k-step formula is

ecovered at k-th step after the stepsize is changed.

How seriously stepsize changes affect the global stability and accuracy has

not been systematically studied yet., Experience indicates that, for k-step

formulas, the effect is insignificant if the stepsize is varied at most

every 2k-th step.

3.3.5 Step Changing Techniques for the Central Difference Formula

The effect of step chanjying techniques on the stability of explicit formulas
is more pronounced than on implicit formulas because the stability margin of
explicit formulas is quite narrow, mostly wh ¢ 2.0. We present a relevant
portion of the results from [27] for the central difference formula. Of

the four techniques considered (see Table 5), the velocity averaging technigue
(FAVE) is most desirable for undamped problems, whereas the variable coeffi-
¢ient technique (FVCO) outperforms the rest for heavily damped problems. As
in the case of implicit formulas, the guestion of how often the stepsize can
be changed without a noticeable affect on the global solution accuracy has

not been satisfactorily resolved yet.,

3.4 Stepsize Selection Strategies

The earliest known numerical integration method is due to Euler [28,29].

By 1973, the number of publications had grown to over 600 [30] and over 50
articles are published every year. Of these, at least a dozen are directly
concerned with the class of stiff-oscillatory systems to which structural
dynamic problems belong. Adequate stepsize selection strategies for non-
stiff parabolic problems exist [31] and some promising strategies for stiff
parabolic problems have been published [32]. The authors are not aware,
however, of many publications that deal with stepsize selection for stiff

oscillatory problems.

The paucity of publications is apparently due to the fact that leow-accuracy

solutions (e.g., two correct digits) are acceptable for many structural
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Table 5
FORMULAS rOR STEP CHANGES

Technigue Formula
n+h n-b 1 1
= = +
Variable Coefficient e *2 (hn hn-l) 4
(FVCO)
un+l =u" + h n+l
n
* Nk 1 ‘n-4 n-} .n
= - - - - 2T+
Average Velocity 2 [(3-1) u (1-r) u 2] h 3
[FAVE
un+1 = un + h ﬁn+&
n
‘n+y 1 2, -n-k 2, -n-3 on
= e 7 - - 2 +
Extrapolation u = [+ u (1-r9) u' 2] h G
(FEXT)
Un+l = un +h ﬁn+5
n
- N+ *n-k 1 ol el = 1
=1 Z(h_+ + + (l-r) i i
Interpolation u 4 + glh, hn_l){(B rju (1-r) u ﬂ
(FINT) i
UL h ot

b ors= hn/hn-l

2) All the above formulas recover the basic formula (2.23)
when r = 1.
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dynamic problems, while most of the available stepsize selection strategies
are based on the truncation error concept, which is effective chiefly for

high-accuracy requirements.

For variable-step explicit integration, the ability of detecting local
(incipient) instability is mandatory. For implicit integration, the ability
of maintaining a given accuracy level is essential. A general-purpose inte-
gration package should therefore have the ability to monitor both cases
depending on the integration mode, and transition from one mode to the other
should be governed by anticipated cost minimization. We now examine these

goals in more detail.

3.4.1 Explicit Variable-Step Strategies

In low—iccuracy explicit integration, the detection of instability becomes
a major concern. This requires an accurate assessment of the highest fre-
quency of the system. Experience shows that this is not a simple task in
nonlinear problems, and repeated calculations to that effect can be costly.
Numerical experiments have shown that monitoring the truncation erxor as
stability quard is generally useless. Of several empirical techniques
proposed and tested so far, the following "perturbed apparent local frequency"
concept has been found to be reliable and efficient. The perturbed apparent

frequency wy is defined as

Au, Au,
W, = - =2 (3.43)
aj Au2

which can be expressed for linear homogeneous equations as [27]

E w? t?m Aqi
wg, = =) JI T , m=1, ..., ne (3.44)
] tZ qu

where tj is the i-th column eigenvector and g

ment vector from the relationship
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u = Tg (3.45)

Remark 1. The gualifier "apparent"” is used here to emphasize only those
frequencies that are participating in the dynamic response. For example,

a structure under free-fall gravity moticon exhibits only the rigid-body
motion (zero frequency). 1In this case, (u.\a)max is zero and any arbitrarily
large stepsize shculd yield an exact solution, which is confirmed by numeri-

cal experiments [33].

Remark 2. The highest frequencies participate in the dynamic response at
early time and may hardly participate at a later time. The apparent fre-
quency concept should in this case result in an increased stepsize at the

late time period, which appears also to be the case.

Numerical experiments indicate that the step selection strategy based on the
apparent-fregquency sampling theory outperforms all other strategies
tested. Further refinements cf this st%ategy are expected by experimenting

on large-scale problems.

3.4.2 Implicit Variable-Step Strategies

Four strategies for stepsize selection in implicit integration will ke
mentioned. They are based on the local truncation error, residual term,

Richardson's extrapolation and deviation from linearity, respec. vely.

The use of the truncation error is well known and need not be further
explained, see e.g. [7]. The residual term 4@ is the difference between the
acceleration computed from the differential equations of motien (1.1) and

that computed from the integration formula (2.7b):

. _ N
= - - .46
4, ul ,w) - (@ - h)/hg (3.46)

An approximate local error En cén be expressed [34] as

ot
)

L s - (3.47)
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where p is the order of the integration formula.

The strategy based on Richardson's extrapolation uses the difference
. . . . 1 .
between two solutions obtained with stepsizes h and 5 h, respectively, to

express the local error as

e vou (Eh)o-u (h) (3.48)
or a similar estimate of En when smoothing is performed [33]. Limited
experience suggests that the residual term estimate (3.47) is far more reliable
than the truncation error. The estimate (3.48) is the most reliable of the
three, but requires at least three solutions per step. In future numerical
experiments, error estimation by extrapolating at every tenth step is con-

templated to reduce the computaticnal overhead.

Finally, the deviation from linearity can be used as stepsize selection
strategy. This works effectively if the major source of error is due to
system nonlinearities and one has'a priori knowledge of the linear behavior
of the system. This option is attractive in those cases where the analyst
performs a linear dynamic¢ analysis first and then decides to proceed to a

nonlinear analysis on account of critical design considerations.
Nc consensus as to which strategy is most suitable for structural dynamic
analysis has been reached as yet. 1In fact, this constitutes an important

area of near-future research (cf. Section 3.6).

3.5 New Approaches

It should be clear from previous sections that the relative performance of
explicit and implicit methods depends on problem characteristics, user
requirements (especially accuracy level), and the computer cost function.
The two methods can be applied concurrently over different portions of the
structure [36,37] or in an interleaving manner so that the integration pro-
cess alternates between the two modes according to a cost minimization

criterion [38].




ey

A combination of explicit integration and mode superposition methods can

be useda to increase the effective integration stepsize. Xnowledge of a set
of high frequency dominant eigenvectors allow the corresponding subspace to
be annihilated from the equations of motion [39]. The net result of this
technique is an extension of the maximum stable stepsize for explicit methods;

this gain may be significant for certain classes of problems.

It may also be possible to combine the traditional Rayleigh-Ritz method

with implicit methods. Direct time integration would be used only occasionally
to evaluate errors in the Rayleigh-Ritz approximations and, if necessary,

to trigger the injection of additional sets of trial mode shapes. Such an
effort would probably shed some light on the usefulness of the so-called

exponentially fitted formulas from an engineering application viewpoint.
The classes of problems for which each of the aforementicned approaches
become advantageous has not been fully explored, and more extensive testing

will be required before definite conclusions to this effect are reached.

3.6 Areas for Future Research

The increasing importance of dynamic analysis in design and verification of
complex structures has given renewed impetus to research activities in

direct time integration methods. During the past decade, significant progress
has been made in the following areas: technigues for stability/accuracy
assessment in linear problems, gqualitative assessment of effect of nonlineari-
ties on stability, comparative performance rating of multistep formulas on
various nonlinear model problems, and spatial hybridization of explicit and

implicit formulas.

Turee important near-term research areas will be mentioned. The authors
believe that the most important one is the further development of stepsize
control strategies for implicit integration methods. Progress in this area
would facilitate the production of cost effective dynamic analyzers that can
operate with the same degree of reliability as that of presently available

static analyzers, and hence attract interest from practicing engineers.
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A second area involves the systematic studv of performance —rossover zoints
between explicit and implicit methods for a given computer environment and

a set of representative proklems. The crossover pcint can be expected to
depend not only upon the required accuracy level and the stersize selection
technique, but also upon the computer characteristics and the quality of the
supporting software. Resolution of this topic would simplify the implemen-

tation of problem-adaptive temporal switches between both integration modes.

A third area pertains to the study of the influence cf formulations and
computational procedures for nonlinear problems on the stability of the
integration formulas. (In other words, investigation of the interaction

between Sections 2 and 3.2.)

Finally, as a long-term research topic, we should mention the potential
impact of new computing equipment on the performance of direct time inte-
gration methods. Some of the technigues which are currently deemed obsolete

may turn out to bhe most suitable, or new formulas and procedures may have yet

to be develoned to fit new computing environments. At the present, however,
the develcpment of new integration formulas is not likely te advance the

state of the art as significantly as that of the three near-term areas. E

e e i




4. CONCLUDING REMNARKS

Substantial computational cost reductions, of the order of 2 to 50,have been
observed as a result of the use of the generalized pseudo-force approach cver
the conventicnal tangent stiffness approach. Another cost reduction of
roughly 2 to 5 can be achieved by paying careful attention to implementation

details. The total gain can thus span one or two orders of magnitude.

An important consequence is that nonlinear dynamic analysis ¢an no longer be
regarded as being orders of magnitude more expensive than the corresponding
linear analysis. For sufficiently large problems the array-processing effort
involved in the solution-advancing cycle dominates over that of evaluating
nenlinear terms. Under such circumstances, and assuming identical inte-
gration-driving software, the (nonlinear/linear) cost ratioc pexr time step

is close to unity in explicit integration. For implicit integration, the
ratio depends primarily on the number of iteration cycles per step if refac-
torizations are avoided, and typically varies from 2 to 5. These significant
cost reductions have been translated into Figure 7; this is an update of a
chart prepared in 1976 [3], which reflected the then prevalent use of the

tangent stiffness approach.

It is hoped that the improved computational efficiency, when coupled to the
increased reliability brought about by the problem-adaptive technigues
discussed in sSection 3, will eventually resull in brcader usage of

transient nonlinear analysis by practicing engineers
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Appendix A
COMPUTER IMPLEMENTATICN OF DYNAMIC ANALYSIS

a.l Qrganizational Approaches

Two prhilosophies may be followed in the implementation of transient response

analysis capabilities.

1. Tightly Coupled Processors. The analysis control is embedded

within the framework of a specific structural anal,zer.

2. Loosely Coupled Processors. The analysis control is segregated

as a modular "driver" processor, which is interfaced with existing

analyzers through a data base management system.

(A similar choice appears in other application programming areas such as
optimization and synthesis, in which a general purpose driver processor

controls analysis processors.)

The first approach offers the benefits of expedience and potentially high
computational efficiency, inasmuch as special analyzer features can be
exploited. It is indicated if the development is carried out by the
designer of the analyzer, or a tightly knit team that includes the
designer. The main disadvantzve of this approach is the sacrifice in
flexibility of application, main-ainakility (the ability to repair errors),
and modifiability (the ability t> make functional changes). Furthermore,
if the structural analyzer is *ery complex, or is adjudged proprietary by

its source, this approach may be unfeasible.

The second approach is consistent with present trends as regards
construction of data base linked program networks [40]. Consequently, it
is believed to offer the greatest potential on a long term basis. It is

particularly appealing when several existing analyzers, some of which may
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be unmodifiable, are to be interfaced with the same integration driver.

One drawback ¢f this approach is the need for considerable attention on

the part of the developer to the overall design of the program to avoid
"downstream" surprises. Separable driver operationalso presupposes the ready
availability of a library of supporting matrix processors as well as that of

a scientific data management system. Because of the long-term nature of the
development effort, this approach, which is the one discussed in the following

sections, is not necessarily suitable for every programming group.

a.2 The Players

Many irdustrial and engineering organizations maintain a library of structural
analyzers. These are either acquired from external sources or, if the
organization is sufficiently large, develcped in house. Most of the analyzers
will be linear, some nonlinear; in the latter case, a restricted problem

application range is the norm rather than the exception.

Another intervening software element is the time integration control module,

herein called the integrator (I) for brevity.

The function of the analyzer (A) is to generate the discrete dynamical
equations, i.e., the components of (l.l). The integrator advances the

state solution by following one of the computational sequences discussed

in Section 2. Computed responses may be fed back to the analyzer to r~gene-
rate nonlinear terms or to compute derived quantities such as stresses.

Upon analysis commletion, the computed responses are sent to a display post-

processor (D). This is usually a separate module, although portiors of D
may be actually duplicated in the integrator to produce "display snapshots"

during the analysis process.
The process just described is schematized in Figure A-l. This software
organization may be regarded as an instance of modularization by program

function [41].

A.3 Transient Linear Analysis

A large percentage of dynamic analysis concern linear problems. Moreover,
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an important class of nonlinear problems can he processed in "piecewise
linear" mode, in which the response is linear except at isolated "busy"
periods. Consequently, the development of a modular, general-purpose

integrator would be perhaps economically unjustifiable if a capability for
efficiently functioning in linear or piecewise-linear mode is not provided.

This capability is activated by suppressing nonlinear feedback.

Figure A-2 schematizes the operational flow for transient linear analysis.
In this case, a high degree of modularity is possible. The structural

analyzer functions primarily as an array generator. These arrays typically

include the matrices-g,,g, and M and the "base load vectors” Ei discussed
below. These arrays are placed on a glokal data base (GDB), which resides
on permanent storage devices. If the formatting requirements imposed by the
support processing utilities (F) conflict with those of the analvzer, the

arrays must be passed through a data format converter (Cl) before they are

ready to be submitted to the integrator.

The temporal variation of the applied force vector can be often expressed

in the separable form

f(t) = E L, A.(t) = L A (a.1)

where Ai are user supplied load factors and L is the base load matrix whose
columns are the base load vectors Ei' Frequently, ny << nf, the number of
freedoms; if n, = 1l, the locading is called proportional. Usually, the buse
load vectors result from discretization of forcing fields such as surface
tractions, temperature variations or body forces, and must be therefore
generated by the structural analyzer (this is the cause of the path accessing
the applied force segment in Figure A-2). The decomposition (A.l) entails
considerable computational advantages if L, is constant over a set of problems

and che user wishes to investigate the response to a ensemble of load

histories.

Computed responses are placed on the global data base and can be later

accessed by the display postprocessor module (D). If the history of derived
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guantities such as strains and stresses is reguired, the simplest procedure
is to send the computed responses back to the analyzer; derived responses
can be then accessed by D. Two format converters, identified as C2 and C3
in Figure A-2, are generally required for this operation. Displayed results
may take the form of time histories, envelope (peak response) plots, and

response spectra.

An implementation of the operational flowchart in the form of data base-linked
program network [40] is illustrated in Figure A-3. A key ingredient is a
common data base manager (M) through which the global data base is accessed.
In addition, computational modules such as the analyzer and the supporting
matrix processors normally have their own local data bases (LDB), which con=-
tain intermediate result and auxiliary data structures. These local data
bases are efficiently maintained in a "virtual memory" storage pool adminis-
tered through local data base managers. These may be developer-supplied or

part of the operating system library.

It is important to realize that the degree of modularity of this implementa-
tion is very high. For example, replacing an analyzer by another entails
changing the converters (Cl' Cz, C3), with no side effects propagating to
the integrator. Conversely, incorporation of technical improvements in

the integrator does not imply that the analyzers must be modified.

Th ability to "plug in" different linear analyzers is particularly advanta-
geous if segments of the structure are modeled by different programs. This
is a common occurrence in large-scale engineering projects invelving many
subcontractors. The converter C, is then complemented by a "substructure-

1
linking" module that ties the various models together.

Another advantage of the data base-linked organization is potentially smooth
adaptability to distributed processing (segments of the problem may be
assigned to different computers)., For example, the display postprocessing

stage can be most economically carried out on a minicomputer.

A.4 Transient Nonlinear Analysis

Figure A~5 depicts the operational flow for transient nonlinear analysis
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carried out through a pseudo-force tased integrator. The xey difference
from the linear case is the occurrence of response feedback at each time
step. This has a detrimental effect on the degree of modularity attainable

as regards integrator-analyzer interaction.

Computed response information is used by the analyzer for evaluating stresses,
nonlinear force terms and applied forces (if the latter are configuration-
dependent). In problems involving material nonlinearities, the stress cal-
culations also impacts the generation nf stiffness matrices and of certain

nonlinear force terms.

One of the constraints imposed by the lessened functional modularity is

the elimination of the array format converter C The array conversion

1"
would have to be exercised many times during the run, which can be expensive.

The eliminaticon of C, can be effected in several ways:

1
1. Embed C1 in A so that arrays are directly produced in P-acceptable
format.
2. Configure P so that various self-labeled array structures are

accepted [42].

3. Do matrix processing in A so that most of the required array trans-

mission is in the form of one-dimensicnal arrays.

In connection with the third approach, it is noteworthy to mention that
explicit nonlinear integrators are inherently more modular than implicit
integrators, inasmuch as all analyzer-to-integrator data can be transported

in vector form, including the diagonal mass matrix M (cf. Section 2.7).

How can the functional flowchart of Figure A-4 be implemented to maximize
modularity? One possible solution is shown in Figure A-5., Here the analyzer
and integrator operate as "coroutines" linked by an executive control

component E.

Some operating systezms require that E be a developer-supplied program, a

restriction that forces A and I-P to be organized as parallel overlays.
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this case, the two sides of Figure A-Z zan ke Keért as§ zhysizcally inderpendent

orograms served by a2 common version of the data ase manager M.

A3 The STINT Code

A stand-alone intagrator called STINT has been devalored Iollowing zthe lcosely-

—lon-lavel versions. 3TINT <an operata 3s 22 implizic or axzlicic integragsr

The implicit integrat:ion branch uses the zracezoidal rule and the Park
3~step method [13] as zasic formulas for trzating linear and nonlinear
oropblems, respectivelvy. Processing of the lattar relies upon a general
oseuco-~force aprroach used in conjunction with the matrix scaling zechnicue

descrikedé in

{i

ection 3. The (Cl) computat:ional seguence is presently used,
although implementation of (JQ) is anticipated. Further implementazion cetails

are given in Unéerwood and 2ark [5).

The explicit integration branch is based upon the variable-step central 3i&-

. N . . - - ~ -
farence scheme [2:]. Implemencation derails are given in Underwcod and 2ark[33].

A long-term effcrt in "tuning up" problem-adaptive I=2atures of 5TINT,

notably the automatic stepsize salection, has resulted in impressive but

,1 "staggered" performance cains in either the implici“ cor explicitc tranch. As
a2 consequence, efficiency ¢rossover »oints cn the same zast pronlem set have
. : 7aried as new verions are prepared. Presently, the explicit integraticn branch

is consideraed to 2e in superior sharpe.

] Although STINT can switch from explicit %c implicit mede, or vice-versa,
uring an analysis run, the switch points must be presently specified by
the usger, Cur ultimate goal i1s to have STINT select the intagration mede

automatically aczording to a cost (merir) Zfuncticon minimizaticn criterion;
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The realization of this goal will have to wait, however, until stepsize

control techniques in the implicit branch demonstrate the same degree of
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